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ilet a plane-parallel stream of a viscous compressible fluid with velocity
u = const flow toward a fixed body which is symmetric with respect to
the flow direction. At large distances from the body in the wake the
pressure is approximately constant in transverse sections of the wake,
the transverse velocity is small in comparison with the lomgitudinal
velocity and the rate of change of the longitudinal velocity along the
axis of the wake is small in comparison with its rate of change in the
transverse section. Therefore, in an unbounded fluid, the pressure
gradient along the axis of the wake is negligibly small. Then we have

the following basic equations:
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Here the coordinate x lies along the axis of symmetry, u, v are the
components of the fluid velocity along the coordinate axes, p is the
fluid density, p the viscosity, ¢t the temperature, Cp the specific heat
at constant pressure, & the coefficient of thermal conductivity and J
the mechanical equivalent of heat. The subscript =~ denotes parameters in
the undisturbed flow. We assume that
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C m
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where A and B are undetermined constants. We introduce the stream func-
tion by the formulas

u = g .
p dy p Oz

and change variables from x, y to x, . We have

G=o ), @) =—2(@).+()
9y )x P \OY /.’ 0 Jy = ey \O Jx TNz,
Then Equation (1) assumes the form

du 9 p du
Poo 35 = Gy (uu;‘;g\;) O]

At large distances from the body in the wake u = u, + 8y, v= vy,
where uy, vy are small, Confining ourselves to the main terms, we have,
instead of (7)

8)

We introduce the dimensionless quantities by the formulas
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Here L is a characteristic dimension. By virtue of (4) and (5)
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Then (8) assumes the form

.a_[]i = 0 ( m-—1 .a_[.]_I_
X oV o (9)
This equation admits an analytical solution if m = 1. In this case

oy _ 20,

it 3 1
0X oy (10)

The boundary conditions for Equations (1) to (4) are
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v =0, %‘f..:() for y=10, u—u,, -0, t—oteo fory—-+oo (1
Yy
From this
U;=0 for ¥—oco, %%;:o for ¥ =0 (12)

if the axis of symmetry is taken as the streamline iy = 0.

We enclose the body in some control volume AAIBIB. so chosen that AB
and A131 lie at a large distance h from the body in the undisturbed flow
and are parallel to the undisturbed flow velocity, A4, lies ahead of the
body in the undisturbed flow and perpendicular to its velocity and BB
lies behind the body and parallel to A4;.

The total momentum flow across the control surface equals
R
S puwsdy
-k

If D is the drag per unit thickness of the obstacle, then by the momentum
theorem

] o0 o0
D= S puudy, or D= g puuy dy ~,S Uiy (13)
—h —r0

)

Replacing + h by £ e is permissible since u; = 0 for [yl = h.

let
t=¥/VX, U1=CX%() (14

where C and ¢ are constants, Then
(=]

D~§ XIYTg@) &L

—00

But D is a constant quantity, hence the integral must be independent
of X. Consequently, ¢ = — 1/2. Then by (14), we have

Uy=CX g (@) D)

and instead of (10) we have

PITIE (PRI P
g +-§'Cg+-2‘-g—’0 (16)
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The boundary conditions are

g'=0 rfor =0, g—0 for {=—co {7

Integrating (16) twice, and taking into account the boundary condi-
tions, we obtain

g = exp (""% CE> {48

The constants A, B and C are determined from conditions at infinity
(11), Equation (13) if D is known and from the theorem of energy change
applied to the contour AAIBIB. The temperature t is determined from
Formula (6), and the density p from Equation (4}.

The analogous problem for incompressible fluids was solved by Tollmien.
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